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Abstract. Thebehaviourof orbits of/heac/ion of/hegroupofsmoothgaugetrans-
formationson connectionsfor a principal bundle P(M, C) is discussedwith and
withoutcompactnessassumptionon M andC. In thecaseof compactM andwith
suitableconditionson C astratificationstructurefor thespaceoforbitsis established.
A naturaltameweakRiemannianmetricis givenon eachstratum.

I. INTRODUCTION

Suitablesmoothnessstructureshavebeenintroducedon the gaugetransformation
group g andon thespaceC of connectionsof aprincipalbundle P( M, C). Properties

of ~ and C canbeinvestigatedwith and withoutassumptionson M and/or C ([1],
[2] andreferencestherein).

A naturaldevelopmentis studyingthe orbit spaceof this actionwhich is also a rele-

vant object from thephysicalpointof view in gaugetheories.It is well known that the
singularYang-Mills Lagrangianscanbe treatedas non singularLagrangiansif one in-
troducesthe trueconfigurationspace,i.e. thequotientC/~of thespaceof connections

undertheaction of the gaugetransformationgroup.
Thecommonattitudehasbeento introducesometechnicalassumptionsin orderto

obtainthattheorbit spaceis a(infinite dimensional)manifold. ThusclassicalYang-Mills
theoriescanberegardedas (infinite dimensional)dinamicalsystemson C/~governed
by a Lagrangianeffectively definedon it [3]. Thekinetic energytermof theLagrangian
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is providedby a Ricniann~anmetric naturally defined on the orbit space
On the other hand, topological and geonletric aspects of the orbit space and of the

group of gauge transfonuations appearedvery early of relevance in quant hat 11)11 prob-
lenis,mainly ill thepath integral approach. At first Singer[4] provedthe inpossibil tv of

a global gauge fixing. Local gauge fixing is however assured and is iterpreted as tire ex-
istence of local sections of the projection C C/c. More recently, it has been pointed
out that many physicalpropertiesof gaugefields arerelated to non trivial topological or

geometrical aspects. A naturalmetric on theorbit space would allow a geometric Inter-

pretationofFaddcv-Popov determinant [5], [6] andit is expectedto he an useful tool in

a continuous non-perturbative regularization of Yang-Mills path integral 7].
As a matter of fact, the geometryof orbit space is intricated~many assuniptions are

commonly madeto obtainon it thestructureof Hubertmanifold. Thespacesof mappings

involved in the theoryare assumed to he defined on a compact manifold (the eonipaeti-

fication of space-time or of ordinary Space) and to belongto someconvenient Sobotev
completion. The heavy — but technically very useful — compactness condition can be

justified by assumptionson the behaviour of fields at infinity which appear very reason-
able from the physicalpoint of view. The physical meaning of the Sobolev completion is

hardly testableandin fact‘this procedurecan be avoided. Thefurther usualassumption

that thegaugegroupis compactcoversall the usualYang-Mills theories.

But themostrelevantpoint is thatthe orbit spacefails in generalto be amanifold [4]:

evenundertheabovecompactnessassumptionsonecanonly define on it a stratification

structurewherea(weak)Rieniannianstructureis definedonly on eachstratum. What is

commonlyconsideredis just the genericstratum which is open anddensein the entire

orbit space. in our opinion, however, thecompletestratified structureof orbit space

should be takeninto accountin theanalysisof problemsrelatedwith gaugefixing and

path integral quantization. We emphasizethat this intricated situation is not peculiar

of gaugetheories.For instance,it is well known that stratificationstructuresappearin

generalrelativity [8], [9], [10], [11].

In this paperouraim is to showhow thestructureof stratificationon the orbit space

canbeworkedout ifl acontextas generalas possible.The first problemonemeetsis to

guaranteenicetopologicalpropertiesof stability subgroupsandorbits. Yet, investigation

of this topological aspectshowsthat the caseof non compactmanifold M is hardly

workableandthereforewe areforcedto retire to thecompactcase.

With compacmessassumptionwe arealso gratified by the structureof tameFréchet

Lie groupandtameFréchetmanifoldon c and C, respectively.The important pointis

that in this contextonecandisposeof aworkableversionof theinversefunctiontheorem

[12]. Thisallowsusto showthatorbitsarenicelyimmersedassubmanifolds in C, under

the furtherassumptionthatthegroup C essentiallyis compact.

Onthebasisof thesetopologicalpropertiesandtamenesspropertiesof the manifolds

underconsideration,we can runtheclassicalrouteto constructa stratificationstructure
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which goesthrough aslicetheorem, This is the procedurefollowed in [8], [9], [10], [11],
[13], [14] and [15]jointly with Sobolev spacetechniquesto handle infinite dimensional

manifoldsacted,by infinite dimensionalgroups. Othermethodshavebeenusedin the

studyof theorbitsof thesolutionsof Yang-Mills equations[16], [17].
In Sec.II we investigatestability subgroupsandwe showthat theyarelocally com-

pactLie subgroupsof ~ in thecaseof compactM anddiscretesubgroupsin the non-

compactcase.

In Sec.III we showthetamenesspropertiesof g and C in thecaseof compact M.
This is linked with the problem of disposingof an inversefunction theorem. In Sec.

IV we investigatethe behaviour of orbits. Further assumptionsare made to garantee

that orbits areclosed,In this caseorbitsare embeddedsubmanifoldsin C. In Sec. V a

slice theoremis establishedandin Sec.VI the wantedstratificationof the orbit spaceis
obtained.Weare alsoableto introduceanaturaltameweakRiemannianmetricon each

stratum.
Throughoutthe paperwe assumeM to be an ordinary connectedmanifold and C

anordinaryconnectedLie group.

II. STABILITY SUBGROUPS

Throughoutthe paperP( M, C) = (P,p,M; C) will denote a principal bundle,

for which M is an ordinaryconnectedmanifold and C an ordinary Lie group, with

Lie algebrag. The group ~ of gaugetransformations is the set SecP[ C] of smooth

sectionsof theassociatedbundle P[ C] = (P xGG,PG’ M), the actionof C onto itself

being definedby innerautomorphisms.It hasbeenprovedin [I] that c, endowed with

the FD-topology,is a NLF-Lie group and that its Lie algebraL(G) is theNLF-space
(inductive limit of nuclearFréchetspaces)SectP[g] of compact support sectionsof

theadjointbundle P[gl = (Px~g,p~,M).The exponentialmap of G,exp : g —i G
inducesafiberpreservingmap ~ : P[g] —~ P[C]. The map (~)* : Sec~P[g]—*

SecP[ C] isthe exponentialmapof thegaugetransformationgroup,andwe will call it
Exp. Note that Exp is a local diffeomorphism[1].

For a fixed u0 e P, wecandefineamap E0 : —* C by

.s(p(uo)) [(u0,E0(s))]

whereby [(u,g)] we denotethe elementof P x~G containing (u,g). One easily

recognizesthat E0 is a smoothmapand a grouphomomorphism.

We considerthe space C of principal connectionsas a local manifold, with local
model theNLF-spaceA = SectL(TM, P[g]) and recall that the naturalleft action

A:gxC~C,A(s,~)=(sY’~
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is smooth[2]. Briefly, wedenoteA(s,’y) with s’y. As starting point in investigating

thestructureof theorbit spaceof this action, we studystability subgroups.

Let S1 bethestability subgroupof theconnection‘y. It is well known that theele-

mentsof S1 arethe ‘v-parallel sectionsof P[ Cl. As M is connected,thesesections

are determinedby their value at apoint, say ~, of M. Indeed,let c : ---* M be

a smoothcurvejoining ~ to x, u0 a point over ~ and P1( c, t, u0) the parallel

transportalongthecurve c starting from u0. We havefor a E S1

(2.1) s(x) = [(Pt(c,l,u0),E0(s))].

Thereforethemap E0, if restrictedto S1 is aninjectivehomomorphismand,asis well

known, its imageis C(7-C~),thecentralizerin C of theholonomygroup 7-i~ of the

connection ‘y.
If M is notcompactand a E S1nc~,wherec~= Sec~P1CJ, thereexists ~ C P

suchthat E0(s) E0(e), where e is the unit of g, so that E0(s) equalsthe unit

ec of C. Thus,formula(2.1) implies S1 fl ~ = {e} (sothat the group c~acts freely

on C). Moreover,we recallthat c~is anopen-closednormalsubgroupof ~. Thus S1

is a discretesubgroupof ~, actingdiscontinuoslyon ~ andthe quotientspace~/S1
admitsastructureof quotientmanifoldmodelledonthesamemodelof ~, i.e. on theLie

algebraL(~)= Sec~P[g]. Thingsareverydifferentif M is compact.In this casethe

FD-topologyon ~ and S1 agreeswith theWhimeytopology andit is ratherstandardto

provethatthestability subgroupof aconnection~yis isomorphicastopologicalgroupto

C(7-c0). Would g beanordinaryLie grouponecouldimmediately infer from thisthat

S1 is aLie group,Lie isomorphicto C( 7-~).Actually this is true also in the present

case,but it needsanontrivial proof,evenif thegroup ~1 is a locally compactsubgroup

of g, sincefor FréchetLie groupsonecannotat presentdisposeof a generaltheorem

concerningLie subgroups.

To this purpose,we introduce

K {~~ L(~) Exp(t~)C S1,Vt C IR}.

SinceBaker-Campbell-Hausdorffformula holds in ~ and is closed we see that

K is a Lie subalgebraof L(c). It is not difficult to prove that the homomorphism

L(~) —~ g inducedby E0, if restrictedto K givesa isomorphismof K with

theLie algebrag0 of C(7-ç). Morcoveroneeasilyseesthat L(g) = K ~ H, where

H denotesthe inverseimageby E~of anycomplementh of g0 in g

Let q~:K~H —*~ definedby ~(~) = EXPXE~~.

In theproof that S1 is a Lie subgroupof ~, a crucial step is to prove that there

existsan openneighborhood~ of the zeroandan openneighborhoodLic of the unit

of c suchthat ~ : V0 — lie is adiffeomorphism.In thetheoryof ordinary Lie groups
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the analogousstatementis proved asa consequenceof the inversefunction theorem.

Thereforethemap ço g0 ~ h —~ C, ~(k,h) = exp k exp h is a diffeomorphismfrom

anopenneighborhoodof thezeroandanopenneighborhoodLJ~ of the unit e~of C.

Onecan ever assumethat

i) UecUec C U~,

ii) U~U~
1C U~ and that

iii) on U~the inverseof the map cxp is defined.

Then define P[U~] = {[(u,g)J E P[C],g E U~}and U~= {s E ~ s(x) E

P[U~],Vx EM). By [18], Sec4,U~isanopensubsetofQ.Ofcourse,U~satisfies

theanaloguesof i), ii) andiii).
For .s E Ue,E

0(S) = ip(k,h) forauniquepair (k,h) E g0 ~ h anda unique x
existsin K suchthat E~(~)= k. Put s0 = Exp x and ~ ,s~s.Then s0 and

~ belongto U~.Since ~i = Exp )¼ implies )~E H, we seethat s = i
6(x, )~),with

x C K and ~ E H. The map a ~ (X,)l) is the inverseon lie of the map ~ and
is smooth,sinceit is the compositionof smoothmaps. Let ‘V

0 = ~
t(U~). Now, to

prove that S,.~ is a splitting submanifold of g it is enoughto showthat exp(V~fl K)
is neighborhoodof the identity in ~ Butthis follows by theaboveargumentsand by
adaptingtheclassicalargumentsusedin theproofof CartanTheorem[19].

Wehaveobtainedthereforetheexpectedresult.

THEOREM2.1. Let M bea compactconnectedmanifold. For everyconnection-y, the

stability subgroupis a finite dimensionalsplitting Lie subgmupof c, Lie-isomorphic
to thecentralizeroftheholonomygroup of ‘y.

Ill. TAMENESS PROPERTIES OF GAUGE TRANSFORMATION GROUPS

It iswell known that dealingwith manifolds modelledon locally convexvectorspaces
more general that Banachspacesoneis facedwith thedifficulties arising from the lackof
inversemap theorem. Perhapsfor this reasonit is a commonusein physicalapplications
to retire to Banachmanifolds. However, a workable version ofthe inversemap theorem
(Nash-MoserTheorem)is now availabefor a significant subcategoryof Fréchetspace

called<<tameFréchetspaces>>by Hamilton[12]. If tameFréchetmanifoldsare accord-
ingly defined,theNash-MoserTheoremcanbe formulatedas follows (see111.1.1.1.of

[12]).

NASH-MOSERTHEOREM.Let X andY betameFréchetmanifoldsand f: U C X —‘

Y asmoothtamemapon theopensubset U of X. Supposethat T~f:T~X —~ Tf(~)Y
is bijectivefor everyx C U and that

Vf: fTY —. TX,(z,vf(~))F—f (T~fY’vf(~)
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is smooth tame. Then f is locally invertibleandeachlocal inverseis smoothlame (i.e.

f is a tamelocal diffeomorphismat eachpointof U).

A simplecorollaryof thetheoremwhich we will usein the nextsectionis the follow-

ing.

COROLLARY. Let themap f: U C X —i Y besmoothtameand,catislvthe foliowini.’

conditions:

1) T~f T~X—+ Tf~)Yisinjcctivcforeveryi C V;

2) T = {ImT1f}(i EU) isata.mesubbundlcoff’TY,

3) thebundlemapofthe left inversesV1 : T —‘. TXi~ is smoothtame.

Then f is a tameimmersionat everypoint of U.

We recall that f is a tameimmersionat ~ if thereexistsanopen neighborhood (I

of x suchthat fru is a tamediffeomorphismwith atamesplitting suhmanifold of V.

Now, if the basemanifold M is assumed to be compact, the group c of gauge

transformations clearly becomesa Fréchet-Licgroup. Actually, we canshow that it is a

tameFréchet-Liegroupandthat its exponentialmapis smoothtame. In fact,by Theorem
11.2.3.1 of 112], c is a tamemanifold and to prove tameness of group operations and

of the exponentialmap is simply a matter of decomposingthem as in [1] andthe using

Theorem11.2.3.3 of [121.

Thetamenesspropertiesof c. the propertiesof S1 stated in theorem2.1 andlocal

propertiesat zero of the map ~‘ : K ~ H -—~ c abovedefinedallows us to prove that.

in the easeof compact Al, thereexistson ~/S1 a uniquesmoothstructuresuch that

c, ~1 ‘ c/S1 S~) is a smoothtameprincipal bundle is the canonicalprO)ectlon ).

Similarly, we canprove thatthespaceC of connectionsis a splitting afhn~subspaee

of a tameFréchetspaceand the action A of c on C is smoothtame.

Thenotionof tameFréchet-Lie groupcouldberelevantin theanalysisof the structure

of c evenin the case of non compact Al as it is shown by the following arguments.

Let K0 C K1 C ‘i.’ c ... he an increasing exhaustionof M by compactsets K.,

with K~C mt ~ . Choose f,~C C~Al),

1) , f,~it = I on K7 and f7( ~T) = 0 1)11 Al . A,

By Sard’s Theorem the regular values of f,.~aredense,so thereis a regular value

y~C (0,1). Put L,~= ~ ~( g,~,IlL then L~ is a submanifold with houndar\ of

Al with dL~= f~tfo.’~ utd K,~C intl7 J~C intA7 for ill n ~o v~i.nil\

assumethat the onginal exhaustionK7~C ~ C ... consistsof subntaniloldswith

boundaryof Al of dimensionequalto the dimensionof Al.
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ThespaceD( M, K~)of thesmoothfunctionson M with support contained in K~
isatameFréchetspaceby!!, Corollary 1.3.8of [12]. AlsotheembeddingV( M, K,,) —*

V(M, K,,~1)is tame,but V(M, K,,) is nota directsummandin D(M, K,,+1).

Similarly, ~ = { elements of g with support in K,,} aretameFréchet-Liegroups
and c~is the inductive limit (in the category of topological groups) of the tame Fréchet-

Lie groups QK~~

IV. THE ORBITS OFTHE GAUGEACTION

It is well knownthatbehindthe case of compactgroupsactingon compactmanifolds,
therecan be very anomalousbehaviourof the orbits evenfor finite dimensionalLie
groups andmanifolds. Fairly good propertiesof theorbit spacerequire at leastlocal

closednessof orbits. For the action A g x C —+ C this conditionis satisfied in
many relevantcases,the mostrelevantbeingthe caseof a compactbasemanifold and a

compactstructuregroup. Undertheseconditionstheorbitsareevenclosed.

THEOREM4.1. Let M and C be compact. Theorbitsoftheaction A areclosed.

Proof Let 01 C C be the orbit through ~yand {~y,,} a sequencein 01 converg-

ing to ‘y,,~.For every integer k the sequence{‘y,,} convergesto ‘Yo in the Sobolev
affine space~ of Sobolev H~~-connectionswherethe orbitsof the action of

the group g( k) of the H~k) -sectionsof P[ G] are closed [13]. Therefore there ex-

ists S E g(k) such that ‘~ = s’y. Remarkthat ‘Yo and ‘y are smoothsections. This

in turn implies that s is smooth, so that ‘~ C 01• Actually one has,in a local chart,
w0(x) = Ad f(X)w(x) — d~f,where d~fis the (right) logaritmic derivativeof f and

w0 , w, f are local representativeof ‘~, ‘~, a respectively. The element a C ç(k) is
C’ for large k so that f is C’ and the aboverelation impliesby induction that f is

smooth. .

Thefollowing theoremgivesotherrelevantcasesin which theorbitsare closed.

THEOREM 4.2. Let M be compact. In the following casesthe orbits of the action A

areclosed:

i) C is the vectorialgroupR~
ii) C = K x R~,with K a compactLiegroup;

iii) C is an abelianLie group.

Proof i) For a vectorial group the action is simply given by w(x) — d~f.Hencethe
orbitsare homeomorphicto the range of the logaritmic derivative. Sincethe logaritmic
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derivative is a differentia} operator d : Sec P[R~J —~ Sec L(TM,P[ R~1) with in-

jective symbol and theFréchetspacesof smoothsectionsof Riemannian bundles are

projective limits of the Sobolev spaces of H~-sections,from Theorem3.13 of [201
we easily obtain that therangeof d is a closedsubspacc.

ii) It is well known that, if C = K x R~,then P(M, C) is thefibered product of

two principal bundlesP( M, K) and P(M, Rn). Accordingly, we have splittings of

thegaugetransformationgroup,of theconnectionspaceandof thc action. By Theorem

4.1. andpoint i) we obtain thattheorbitsareclosed.

iii) follows by ii) since everyabelian(connected)Lie groupis a directproductof

tori andvectorial groups.

In generalone cannotexpectthat the gaugetransformationorbits are closed,in Ap-

pendix 2 we give asimple exampleof locally closedbut not closedorbits. Moreover

there are examplesof gauge transformation orbits which areclosedwhilst thegroup C

does not satisfy the hypothesis of the above theorem.

Let us denote briefly by A8 and A
1 the reducedmapsof the action A, defined by

fixing a C ~ or ‘y C C, respectively.The commutativediagram

A

c —~C

1~., ~

c/S1

definesasmoothmap i1.
Clearly, i1 is bijcctiveonto 01~in thecaseof compactM local elosednessof orbits

is sufficientto garanteethat i1 is anopenmappingonto 01. Thiscanheshownby using

theopenmappingtheoremgiven in Appendix 1. To apply this theoremto our easewe

remarkthat c SecP1 Cl is aFréchet-Liegroup, henceit is anietrizableandcomplete

group;it is separable,sinceit is a subsetof the separablemetric spaceC~(Al, P[ gl)

theorbit 01 is nonmeagreasalocally closedsuhspaeeof thecompletemetriiablespace

C. Moreover,from tamenessof theaction A andtheexistenceof a family of tamelocal

sectionsof thebundle (~c, 11, c/s1 S~)we obtaineasilythat ~1 ~ smoothtame.

We can go further andprove that is a tameclosedembeddingunderthe I urther

assumptionthat the Lie algebra g admits an Ad -invariant sealarproduct ( )~. [his

assumptionimplies that the imageof C underthe adjoint representationis a compact

group,sinceit is aclosedsubgroupof theorthogonalgroupof g andthis amountsto say

that C satisfiescondition ii) of Theorem4.2. Of coursethis requirementis ratherre-

strictivesince,for instance,semisimplenoncompactgroupsandotherinterestinggroups

are excluded.

From now on, we assumehoweverthat Al and C satisfythe aboveconditions.

Makinguseof thesealarproduct (J)g we first makethe vectorbundle Al g1 into a
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Riemannianbundledefining

(h5Ik~)~ := (hlk)g

if h~= [(u,h)],k~ = [(u,k)] arid p(u) = x, and then, using also a Riemannian
metricon M, weendow L(Q) = SecP[g] of a weakscalar product (I) definedby

(4.1) (AI~)= fM
where m isthepositivemeasuredefinedby theRiemannianmetricon M. Analogously,

usingtheRiemannianmetricon M, we make TM® P[g] into a Riemannian bundle
andendowthetameFréchetspace A = SecL(TM,P[g]) = Sec(TM®P[g]) of
a weakscalarprodut (~)defined by

(4.2) (~I/~)= fM~~~xdm

where m is thepositivemeasuredefinedby the Riemannianmetricon M. Obviously
this scalarproduct on A canbeunderstood,whenneeded,asaweakRiemannianmetric

onthe tameaffine manifold C.
AnaturalsmoothtameactionAd of g on A canbedefined.Let Ad : QxL(Q)

:= AdS(X)A(z) betheadjointactionof Q on L(~), where Ad is
thebundle map

Ad PEG] XM P[g] —~ P[g]

([(u,g)],[(u,h)}) —~[(u,Ad9h)].

If c~CA isof the form c~= aØA, withascalarI-form a on M and A C L(g),Ad

g x A —* A canbedefinedsetting

: a®Ad3A.

Notethat this action istamelinear (sinceit is just thecompositionwith the smooth bundle
map Ad) and orthogonal, namely it leaves the weakscalar product (4.2) invariant.

Obviouslyenough

(4.3) (T1A
8)(~y,oi)(s’y,Ad~oi),sEg,c~EA.

Using this jointly with thevery well known relation betweenthe tangent of A
1 andthe

covariantderivative V1 definedby ‘y, namely

(4.4) T~A1(e,A)= (‘7,V1A),A C

weobtain

(4.5) V81Ad3A = A~d8V1A.



546 MC. ABItATI, R. CtRIiLtJ. A. MANIA

THEOREM 4.3. Let thetameFréchetspaceA beequippedwith thesea/arproduct(4.2).

Then ImV1 is an S1 invariant lameorthogonalsplittingsubspace,i.e.

A = ImV1 ~ (lmV1)’.

Proof We useelliptic theory andthe well known fact that V1 is a differential opera-

tor with injective symbol. The Kodairadecompositionwasprovedby [20] in the case

of Sobolevspacesof Ht k) -sectionsof vectorbundles. His proofcan be easilyiniple-
mentedto Fréchetspacesof smoothsections,by usingthefact thatthesespacesaretame

Fréchetspacesin the gradingof H~ Sobolcvnorms[12]. To provethat thesubspaces

of thedecompositionaretamesubspaces,we remarkthatthey aretamedirect summands.

Theprojectionson thesesuhspacesareindeedtheprojectivelimits of thecorresponding

orthogonalprojectionsin Sobolevspaces,so thatthey aretame.

Finally, by (4.5) we get Im V,1 = Ad, im V1 is S1-invariant with respectto the

Ad -action. •

We remarkthat, asin thecaseof Kodairadecompositionfor Sobolevspaceof Ht k

sectionsof vectorbundles (Im V1) ~ is preciselythekernel of V!~,the formal adjoint
of thedifferential operatorV1 with respectto the weakscalarproducts(4.1) and(4.2).

Let 0 he an openneighborhoodof the identity coset o of ~/S1, on whicha tame

local section ~ of theprincipalbundle (p’, i1,c/S1: ~ is definedand i~TCbe the

restrictionto 0 of thepullback of TC by i1.

LEMMA4.4. ThesubsetT = {ImT0i1}(9 C 0) isaspliiLingtamesubhund/eoli~TC,

with standardfibre lmV,1.

Proof As TC is trivial, i~TC is simply 0 x A. However,defining iJ.’ :

0 x A by

= (O,Adx.(o) ~)

we get amoreconvenienttrivializationsince,as we now show, ~/(1) = 0 z liii V1. If

L~’is the left translationby a C c on c/S1, by ~1 o = A’ o we gel

(4.6) 1021 0 TQL(O) = T1AX(O) 0 T0i1.

Henceusing (4.4) and(4.3)

lmT0z1= {(i1(0,Ad~to~~ C In1V1).

ThereforeT canbe identifiedwith thesetof pairs (0, ~) suchthat c~= Ad ~3with

J3CImV1. u
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THEOREM4.5. Themap i1 isa tameimmersion.

Proof Firstweprovethat isatameimmersionattheidentitycoseto. To this aim, we
will checkthat the conditionsof Corollaryat Nash-MoserTheoremare satisfiedin the

neighborhood8 of o, definedbeforeLemma4.4. Injectivity of T0i7 canbeprovedby
an easycomputation andinjectivity of T0i1 at everypoint 0 C 8 follows by formula

4.6; the secondcondition is provided by Lemma 4.4.
So, we areleft with the proofthat thebundlemap of the left inverses Vi1 : T —~

T(c/s1)18 is smoothtame. According to II, Theorem3.1.1. of [12] it is enoughto
show that Vi1 is continuousandtame.Since

(Vi1)(0,o~)= TDIJX(o) o V0i1 o T1A~O~(i1(9),c4

where : ImV1 —~ T,,(G/51) is the restriction of Vi1 to the fiber of T on o,
we arereducedto provethat V0i1 is continuousand tame,and this wecan do with the
help of projectivelimit techniques.By the resultsof [13]we have the following situa-
tion: theFréchetspacesT,,(c/S1) , Im V1 and .4 areprojectivelimits of sequencesof

suitableSobolevspacesH~,Im~ and A(k) respectively,with ImV~~C A~’~
11,

and the map T
0 ~ is the projective limit of a sequenceof maps T0 4k) : H~k) .....~

Im~. Their inverse maps V0i~are continuous by Open Mapping Theorem so that

ll(V0~1)~~~IIk.—1~ kII~IIk~
As Im V1 is atameFréchetspacein thegradingdefinedby theseSobolevnormsand

V0i1 = lim ~ we have for ~ C Im V1

Il( V~i1)~IIk_l1K ~ ~ ~‘~kII~IIk

so that is a tamecontinuous map.
Hence is a tameimmersionat o; to showthat is a tame immersion at every

point of c/S1,onecanuse the transitivityof c/s1and the c-invariance of theweak
metric. U

As a consequenceof Theorem4.2.,Theorem 4.3. and Theorem4.5. we finally obtain
thewantedresult.

THEOREM4.6. Let M beacompactconnectedmanifoldandg admitan Ad -invariant

product. Then i1 is a tameclosedembedding. .

V. THE SLICE THEOREM

Thenotion ofsliceandslicetheoremsareusefultoolsinstudyingquotientspaceswith
respectgroup actions. Theconceptof slice stemsfrom the work of Gleason,Mostow,
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Palais and others(see[21} andreferencestherein). A briefsurvey on the subject in the

contextof differentiableactionis given in [II]. Here we adopttheir definition of slice.

DEFINITION 5.1. A slice for the action of a Lie group C on a manifold X at a point
C X with stability group S~is a submanifold S

1 containing r such that:

i) S1 is S1-invariant;
ii) ifgCC and g~S1then gS1flS1=O;

iii) thereis a local section x : U C C/S1 —* C definedin a neighborhoodU of

theidentity cosetsuchthat themap

(1) : U x S1 — X,~(u,y)= x(u)y

is a diffeomorphismonto aneighborhoodV of x.
The existenceof aslice at apoint ~ C X implies that the stability subgroup ~I is

locally maximalin thesensethat, asconsequenceof i).. iii), if v C S1 then S~C ~

If p C V then S~is conjugateto a subgroupof S1 namely thereexistsa g C C

such that gS~g~C S1. Thus,if ~ has a trivial or at least aminimal stability subgroup

(rememberthat in our case is isomorphicto C(fl,A)), then S~= S1Vy C ~ and

thereforetheslice intersecfseveryorbit through V only in onepoint. In fact,as we will

see,it can provide a chartat 01 for the genericstratumof theorbit space.

Theconstructionof a sliceat everypoint z of X goesthroughthe constructionof

anormalbundleto 01-usually realizedas abundleorthogonalto the tangentbundleof

theorbit madeup by meansof aninvariantmetricon X — andthroughtheconstruction

of an equivariantdiffeomorphismof this normal bundlewith an openneighborhoodof

the orbit (i.e. one wants an invarianttubularneighborhoodof the orbit).

At first we introduceasuitablefamily of c-invariant metricson C by meansof a
g-equivatiant family of differentialoperatorsD

1.

Considera C-invariant metric on P inducedby themetricon Al andany C-inva-

riant metric on C arid denoteby H the projectionof TP on its subbundleorthogo-

nal to thevertical bundle. For a givenconnection -y, the differential operator D2 on

A( M, P[g]), thespaceof the P1 gI-valued formson Al, is definedfor every /f’ IN

by

A1(M,PIgI) AH Al,PIgI)
~ = 1(u,(H(dft+~sft))(~..., ~HI

where p( u) = i and Tp(~) = ~ i = (1,. . . /, ~ and ~ arethe equivariant g-valued

forms on P representing~ and ‘~ respectively. Moreoverthe dot is the Ibllowing

wedgeproduct:

.: Ak(P,g)x A1(P,g) A~1(P,g)

(a®h).(b®k)lraAb®[h,kI
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for any a E Ak(P), b C A1(P) h, k E g and A
1(P,g) isidentifiedwith A1(P)®g.

Onecan seethat for s E c

D
81Ad

8 c~ Ad3 D’
1c~

where wedenoteby Ad
3 the extensionsof themap Ad8 definedin SectionIV to the

entire A(M,P[g]).
For every k E N, the wantedc-invariantmetricon C is definedby

(al~= ~f ((D1)L~(z)l(D1)~(x))~dm
M

for c~,,8C A, ‘y C C. Here we make use of a Riemannianmetric on the bundle

(&TM)®P[g] = L(®
1TM,P[g]) dcflnedbyametriconM aridthe Ad -inva-

nantscalarproducton g as in formula(4.2).

Themetrics(I)~‘s aresmoothtamesincethe family of linearmaps D1’s aresmooth
tamemapson C x A1( M, PEg]) to At”’ ( M, PEg]) (see[13] II 3.3). For a fixed con-
nection ‘~ the scalarproducts{(I)~}(kC IN) defineon A an S

1-invariant grading

equivalent to theSobolevgrading [9].

Nowwe are ready to approch the slice theorem. Let 01 be the orbit through -y. We
considerthenormalbundle N(01) = N1 consistingof all vectorsof TC[0 orthogonal

to TO1 with respectto the weak Riemannianmetric (4.2). Using the procedureof
Lemma4.4onecaneasily recognizethat N1 is a c-invariant smoothtamesubbundle
of TC10.

Themap

~ :TC—4C,E(’y,a)=-y+ci~ ‘yCC,aCA

is a c-invariant tamelocal additionon C.

Tamenesspropertiesof ~ arid N1 allows usto applyNash-Mosertheoremand to
provethat, if restrictedto N1, ~ is a local diffeomorphismat everypoint of the zero

section.

As 01 is a closedsubmanifold of a manifold admitting partitionsof unity andis

paracompactandnormal (see [18] 4.11),we canrephraseTh. 9 in Sec. 5 of [22] and

provethatthemap ~ andthevectorbundle N1 realizeatubularneighborhoodof 01,

i.e. themap ~ is adiffeomorphismof an neighborhoodin N1 of the zerosectiononto

anopensubsetof C containingthe orbit
Now, by thepropertiesof theabovedefinedmetricson C one can easily see that the

family of opensubsetsof N1

N~= {~1’ C N1,(~I~)~< �} ~> 0,k C N
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is a basisof c-invariant neighborhoodsof the zerosection.

Wecanrestrictoncemorethemap ~ to asuitabletube N~obtaininganequivariant

diffeomorphism from N,~to an open c-invariant neighborhoodof

Thus the composition i = o p~kwhere

N1 — N~~fk() = ~(( k1~+ 1) ~

is a c-invariant tamediffeomorphismfrom N1 onto an open c-invariant neighbor-

hood of the orbit.

The tame splitting submanifold

= T(T1C fl N1)

is theslice at ‘y. Conditionsi) andii) of Definition 5.1 areeasilyprovedby equivariance

of T and by the S1-invarianceof the splitting in Theorem4.3. We prove the third

condition. Let x : U C g/51 —~ c be alocal sectionas in SectionIV. Then i1(U) is

anopenneighborhoodof -y in 01. Weprovethat themap

U x ~1 T(N11,(ut) ~ = x(uh’

is atamediffeomorphism.If ‘y’ C ~1’ then ~y’= r(y,a) for c~C (1mV1YL. There-

fore

= ~ = r(x(u)~y,Ad~t~t~) = T(il(u),Adx(,~)~

for every u C U,’-y’ C ~ Then 1 is obtained by composition of taniediffeomor-

phisms.

Wehavethefollowing theorem.

THEOREM5.1. Atevely ‘y C C, thereexistsa slice S,.~for the actionof c on C with

theproperties:

“) ~1 isa tamesplittingsubmanifoldof C;

ii) ~ is a tamediffeomorphism.

VI. CONSEQUENCESOF THE SLICE THEOREM

Herewe only drawsomeof the most important consequencesof the slice theorem

whichconcernthestructureof theorbit space.Most of theseconsequencessternessen-

tially from the generalmeaningof the theoreniratherthan from theparticularcontext.
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As a first consequenceof theslice theoremwe areabletodefineon C a c-invariant

smoothtamestratification.We recall that a smoothstratificationof a Hausdorfftopolog-
ical space X is a countablepartition {X1}~~1,where X1 aresmoothmanifoldsin the
relativizedtopologyand the frontierproperty

(6.1) X~flXJ~/Ø implies XcX1

holds.
The manifold X2 is called stratum ([8], [10], [II], [13]).

To constructin C the wantedstratification,we denoteby I theset of orbitstypes,

namelythesetof conjugacyclasses(5) of closedsubgroupsS of c which are stability

subgroups; by C(S) we denotethe c-invariant subset of connections having a stability

subgroupbelongingto (S). Then {C( 5) } ((5) C I) is obviously a c-invariant
partitionof C.

Thecardinalityof I doesnotexceedthesumof cardinalitiesof isomorphismclasses
of reductionsof P( M, C), where the sum is labelled by conjugationclassesof sub-

groupsof the form C
2(11~)(double centralizerof an holonomy group 1-Ij, see

Th. 4.2.1. [13].
Countability of such isomorphism classes follows by the generalresultthat isomor-

phism classesof principalbundleswith a givenstructuregroupandagivenbasemani-

fold arecountableandfrom thecountability of the conjugationclassesof the subgroup

under consideration.Under ourassumptionon the structuregroup G we get indeed

C = K x W~where K is a compactLie group. If C
0 is a subgroupof C, its cen-

tralizer C( C0) hasthe form K0 x R~for someclosedsubgroupK0 of K. More-
over C-conjugationclassesof centralizerscorrespondinjectively with K-conjugation

classesof closedsubgroupsof K. Countability of this lastsetwasprovedin [23].

As afirst consequenceof the slicetheorem,we provethat everystratum is a tame

splitting submanifold of C. Let S be the stability subgroupof a connection ‘~. We
recall that T( N1) is an openneighborhoodof ‘~ in C, so that we havejust to prove

that r( N1 fl C(S)) is a tamesplitting submanifoldof T( N1).
Toseethisfactremarkthat S1~C 5, forevery ‘y’ C ~1’ Thisimpliesthat S1flC(S)

isthesubset = {‘y’ C S1jS1,= 5), sothat T(N1)flC(S)isprecisely~N1), where

N1 = {~-y’,~)C N1 I rey’,~’) C S,~,}.This latteris a tamesubbundleof N1 with
fiber the tamesubspace~ of the fiber at ‘y of the normal bundle N1, consistingof

the vectors ~ whosestability subgroupfor the action Ad is precisely S.
In fact N1 is atrivial subbundlewith trivializing map

N1 ~01 x ~ = (~‘,Ad~1~‘)

where a C c is suchthat s’~= ‘y’. In particular N1 is smoothtamesubmanifoldin

N1 andthis impliesthat C(S) is atameFréchetmanifold.
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To prove the frontier property (6.1) the relevantpoint is that theclosure C(S) of

C(S) agreeswith U{C(S’)I(S) < (5’)), where (5) < (5’) if thereis in (5) a
subgroupof 5’ [14]. Thencondition(6.1) follows immediatelysince

C(S’)flC(S)�O=~.(S) <(S’)

sothat C(S’) C C(S).
It is whortwilc to remarkthat C(S) is openin C(S), since for ‘~ C C(S) the open

subsetr( N1)nC(S) is containedin C( 5). ThereforeC(S) is a residualsetin C(S).
In particularif Z is the centrumof C, the stratum of iITeductihleconnections0(Z)
is aresidualsetin C = C( Z) (in physicalliteraturethis is refeITedasa genericset).

We canthereforeconcludethat {C( 5) )( (5) C I) is a c-invariant stratificationof

C, wherethç strataaretameFréchetmanifolds.
Coming to the orbit space 7?. = C/~itself, oneeasilyprovesby topological argu-

mentsandby the slice theoremthat 7?. is a connectedregularsecondcountablespace,

hencemetrizable.Wecanprovethat the set 7?.( 5) = C(S)ic is a tameFréchetmani-

fold, for every(5) C I.
Actually, for “y C C(S~,considerthe c-invarianttubularneighborhoodT(N1). A

charton theopenneighborhoodT( N1) /~of 01 in 7?.(5) is givenby thequotientof

the c-invariant map ~1’ where

~1 :T(N1) ~1’~1 :=pr2(~oT~)

and ~ is the trivializing map for N1. Oneeasilychecksthatthesequotientmaps(as

‘y rangesin C(S)) give a systemof chartsfor the structureof tamemanifoldon the

quotientspace7?.( 5). R.( 5) is modelledon a nuclearFréchetspaceandthereforeis

paracompact.The quotientmap lr(3) : C(S) — 7?.(5) is asmoothtamesurjeetionand

(C(S), lr(S) , 7?.(5); u/S) is atame fiberbundlewith typcal fiber gis.
The c-invariant stratificationof C gives, by simpletopologicalarguments,astrati-

fication {7?.(S)}((S)Cl) ofthequotientspace7?.. Thestratum 1?.(S) isopendense

in U{~-(S’)KS) < (5’)). In particular, R.( Z) = C( Z)/~is agenericsubsetof 1?..
It hasbeenstressedby [3], [4] and [5] that a natural weakRiemannianmetric is

defined on the stratum 7?.( Z) andthatthereis adeeplink betweentheusualFaddeev-

Popovdeterminantandthedeterminantof this metric. More generally,a weakmetric

canbeintroducedon eachstratumin thestratificationof Sobolevconnections[15]. In

ananalogouswaywe canintroducea weakRiemannianmetric on eachstratum 7?.(S).
Thismetricwill bedefinedby meansof theweakg-invariant metric(4.2)andthehelpof

a c-invariantconnectionI-form onthebundle (C(S),7r(3) , 1?.(S);975), In ageneral

finite dimensional fiber bundle one can develop a generalized connection theory,as sum-

marizedin [24]. Accordingto this theorywe define,evenin a infinite dimensionalfiber
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bundle (E,ir,X; F) a connectionI-form asa vector bundlemorphismç~:TE — TE
with the properties

i) ~
ii) Imq~coincideswith the vertical bundle VerE.
Thehorizontal lift defined by ~ isthe smoothmap

C:TX x~E—*TE,C(v~,u)=(l —~)(w~)

where T7r(w~)= v~the map C is well definedsince Tir(w~) = v~implies (I —

~)( w,~)= (1 — ç6) ( w~).As in theordinarycasethecorrispondencebetweenconnection

1-formsandhorizontallifts is a bijection. However,horizontallifts do not guarantee

the paralleltrasportof curves. Thisdifficulty arisesfrom the lack of inversefunction
theorem.Moreoverwerecall that for infinite dimensionalvectorbundlesthe kernelof
a bundle morphism can fail to be a subbundle [251,so that the horizontal bundle could
notexist.

To define a connection 1-form ~(8) on the stratum C(S) we first introduce a vec-
tor bundle morphism ~ : TC = C x A —‘ TC = C x A defined by çb(”y,a) =

(‘i, P
1a), wherefor ‘y C C, P1 denotesthe orthogonalprojectionon the tamesplitting

subspaceIm V1. The restrictionof ci’ to TC(5) inducesa vectorbundlemorphism

s) : TC(5) — TC(5), sincefor ‘~ C C(S),Im V1 is a subspaceof T1C(5). Actu-
ally, ImV1 istangentto theorbit and C(S) is a c-invariantsubmanifold.

To provethat ~(~ is a connectionI-form on the fiber bundle (C( 5), 1I( s) R.( 5);

a/S) wehavejustto provethat ~ ~ is smooth,sincepropertiesi) and ii) are trivially
verified.

Forevery ‘y C C, theprojection P1 canbe decomposedas P1 = V1C1V!~,where
is the adjoint operatorof V1 with respectto the weak scalarproducts(4.1) and

(4.2), and C1 is theGreenoperatorof the elliptic operatorV~V1: L(~) —~

[15]. Hencesmoothnessof ~ and ~(s) follows by smoothnessof the map C x A ~

(‘~,c~)— P1a V1C1V~CA.

Oneeasilyrecognizesthatthemaps (“~, )~)—+ V1)~and (“y, c~)~— V~aresmooth

tame. Actually, by [26] and11.3 of [12] they are smoothtamefamilies of differential
operators.Smoothnessandtamenessof themap (‘y, )~)— G1( )~)follows by Theorem

II, 3.3.3 of [12]. By colnpositionwe obtainthe smoothnessandtamenessof 1~.
By formulae (4.3) and(4.5) we seethat çb~is a c-invariant connection1-form.

Finally, using thehorizontal lift C defined by çbt ~) we can introduceon 7?.(5) the

tame weak metric

=

Theinvarianceof themetric(4.2) andof the connectionI-form çi’(S) guaranteethatthis

metricis well defined.
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Thus, 7?.(5) admits avery naturaltameweakRiemannianmetric, whichis anatural

extensionof themetricdiscussedby Singer 5] andby BabelonandViallet 131 for generic

connections.Tocomposewith horizontallift amountsto removevertical componentsof

fieldson trueconfigurationspaceandthe unphysical degrees of freedomcorresponding

to gaugetransformations,It is thereforenatural to assumethat this weakRiemannian

metric on R.(S) providesthe kinetic part of the Lagrangianon the true configuration

space[31.

To conclude, 7?. is a connectedmetrizab/c secondcountablespaceand thefamily

{7?.( 5) }( (5) C I)is a stratificationfor 7?., wherethestrataaretameFrdchetmanifolds
admittinga tameweakRiemarinianmetric.

APPENDIX I

THEOREMAll. Let C bea separablemetrizab/candcompletetopologicalgroupaclinf

continuoslyand transitivelyon a first countablenon meagreHausdorfftopologicalspace

0. ForeveryoC0 thernapA
0:C—0,A0(g)=go Lcopcn.

Theprooffollows by the two next lemmas.

LEMMA A.t.2. Let A be a transitivecontinuousactionofaseparabletopologicalgroup

C on a nonmeagretopologicalspace0. Thenfor everyneighborhood0 of theunit e

of C and oC 0, theset00 isaneighborhoodofo.

-Proof By separabilityof C, thereexistsa countablesubset {g,.~} of C such thatfor

everyopenneighborhoodU of the unit, the family {g0U} is a covering of C. By

transitivity of the action, the countablefamily {g~Uo} coversthe non meagreset C

by sets,all homeomorphicto Uo. This implies that Uo is a non rare set, Therefore,

thereexist g C U suchthat go C int(Uo) so that o C int(g
1Uo) C int( ~ I Uo).

Finally, for everyneighborhood0 of the unit of C, thereexistsa neighborhoodU

of theunit suchthat U~U C 0, so that o C int(Oo).

LEMMA A .1.3. Let C be a metrizab/c separableand completetopologicalgroupand C

bea first countableHausdorfftopologicalspace.If foreveryneighborhoods0 of e and
someo C 0 theset Oo isa neighborhoodof o, then themap

A~:C~’—0,A
0(g)=go

is open.
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Proof Let { U,, } beacountablebasisof openneighborhoodsof e suchthat U,,~1U~1C

U,,. By assumption, W,, := A0(U,,) is a neighborhood of o. We can assumethat
V,, C W,,, where {V,,) is a basisof openneighborhoodsof o. To prove our lemma
will beenoughto provethat W1 C A0( U0).

By assumption,thefamily {g V~~ g C U,,} covers W,,.Therefore,forevery w1 C
W1 there exists w2 C V2 C W2 and g1 C U1 suchw1 = g11ii2. By induction, we can

constructasequence{w,,} suchthat

w1g~g2...g,,_1w,,, w,,CV,,CW,,,g~CU~.

Thesequence{h,,} = {9t . . . g,,} is a Cauchysequenceconvergingto some g0 C U0

and w,, convergesto o. We concludethat w1 = g0o = A0(g0) with Oo C U0. U

APPENDIX II

Theexampleswe give hereconcerna trivial principalbundle P = 51 x C with C a

matrixgroup.Thegroup9’ is C°°(S
1,G),itsLiealgebraisC~(S’,g)and C canbe

identified with C°°(51,g)by ~(t) L(t)dt,L C C~(S’,g).This casewasinves-

tigatedin [27] and[28]identifying thegaugetransformationactionwith thecoordinate

changein an auxiliaryequation~i= L(t)x. The authorsinvestigatedthe monodromy
map T : C00(Sl,g) — C whichassociatestoeveryL C C°°(51,g)itsmonodromy

operatorand provedthat this map establishesa injective correspondencebetweenthe
gaugetransformationorbits andtheconjugacyclassesof monodromyoperators. We

improvetheirresultby the following theorem.

THEOREM A.1I.1. Themap T is continuous.

Proof We recallthat the monodromyoperatorT(L) is obtainedby evaluationat t =

2~r of the fundamentalmatrix 1 (t) of solutionsfor the auxiliary equation. On the

other hand, ~I~(t) dependscontinuouslyon L. In fact, theelements L
13(t) of the

matrix L(t) canbe interpretedascoefficientsof the auxiliary equationbelongingto a

completemetricspace(theybelongindeedto C°°(~I R) or C~(~I it)) anda well
knowntheoremon differential equationsassuresthatsolutionsdependscontinuouslyby

suchcoefficients. Hencethe map T is acompositionof continuousmaps. .

Continuityof T assuresthatgaugetransformationsorbitsareclosedor locally closed

whenevertheorbits of theaction of C on itself by innerautomorphismsareclosedor

locally closed. In this way onecan for instanceprovethat the gaugetransformation
orbitsareclosedif C is anEuclideangroup. To give anexampleof anot closedgauge

transformationorbit we considerbriefly theeaseC = CL( 2 , R).
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Consider

~CC~C~(SI,M(2,R)), ~(1)=(~ ~)
and the sequence

s~C9’~C~(S’,CL(2,R)), s,,U)=(i ~).

Then s,~1~y= ‘~ where

~(t) = s )~U)s
0

1(t)+ AU),s1 = ~ (~-‘f)

Obviously

(0 0

0

but ‘y~doesnot belongto the orbit of ‘~. However the orbitsare locally closed. One

caneasilyexaminedirectly theconjugacyclassesof CL( 2 R) andprove that theyare

locally closed.Theelementsof CL( 2 , R) havingdistinct eigenvaluesgenerateclosed
/A 0

orbits. In theeaseof a degeneratecigenvalue A onehasthe singular point ~

(A CA
or the orbit generated by the element 1\ I A ) ‘ This orbit is not closed but locally

closed. In fact its closure is obtained adding only the singular point.
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